Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire.
نویسندگان
چکیده
Semiconductor nanowires show promise for many device applications, but controlled doping with electronic and magnetic impurities remains an important challenge. Limitations on dopant incorporation have been identified in nanocrystals, raising concerns about the prospects for doping nanostructures. Progress has been hindered by the lack of a method to quantify the dopant distribution in single nanostructures. Recently, we showed that atom probe tomography can be used to determine the composition of isolated nanowires. Here, we report the first direct measurements of dopant concentrations in arbitrary regions of individual nanowires. We find that differences in precursor decomposition rates between the liquid catalyst and solid nanowire surface give rise to a heavily doped shell surrounding an underdoped core. We also present a thermodynamic model that relates liquid and solid compositions to dopant fluxes.
منابع مشابه
Perturbation of Au-assisted planar GaAs nanowire growth by p-type dopant impurities
III-V compound semiconductor nanowires (NWs), with their direct bandgaps and high mobilities, have been shown to be promising materials for many applications including solar cells, light emitting diodes, transistors, and lasers. Self-aligned, twin-plane-defect free, planar GaAs NWs can be grown by metalorganic chemical vapor deposition (MOCVD) through the Au-assisted vapor-liquid-solid mechanis...
متن کاملLedge-flow-controlled catalyst interface dynamics during Si nanowire growth.
Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although...
متن کاملIdentification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
The vapor-liquid-solid (VLS) process of semiconductor nanowire growth is an attractive approach to low-dimensional materials and heterostructures because it provides a mechanism to modulate, in situ, nanowire composition and doping, but the ultimate limits on doping control are ultimately dictated by the growth process itself. Under widely used conditions for the chemical vapor deposition growt...
متن کاملA Model For The Residence Time Distribution and Holdup Measurement in a Two Impinging Streams Cyclone Reactor/Contactor in Solid-Liquid Systems
In this paper a two impinging streams cyclone contacting system suitable for handling of solid-liquid systems has been studied. Certain pertinent parameters such as: solid holdup, mean residence time and Residence Time Distribution (RTD) of solid particles have been investigated. A stochastic model based on Markov chains processes has been applied which describe the behavior of solid partic...
متن کاملAtomistics of vapour–liquid–solid nanowire growth
Vapour-liquid-solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2009